Aloha :)
Es stehen \(n=10\) Personen zur Verfügung.
Jede sagt mit \(\green{p=\frac35}\) zu bzw. mit \(\red{1-p=\frac25}\) ab.
Der Wirt hat ausreichend Personal, wenn mindestens 5 Personen zusagen:
$$p(5)=\binom{10}{5}\cdot\left(\green{\frac35}\right)^5\cdot\left(\red{\frac25}\right)^5=\binom{10}{5}\cdot\frac{3^5\cdot2^5}{5^{10}}=\frac{252\cdot7776}{5^{10}}$$$$p(6)=\binom{10}{6}\cdot\left(\green{\frac35}\right)^6\cdot\left(\red{\frac25}\right)^4=\binom{10}{6}\cdot\frac{3^6\cdot2^4}{5^{10}}=\frac{210\cdot11664}{5^{10}}$$$$p(7)=\binom{10}{7}\cdot\left(\green{\frac35}\right)^7\cdot\left(\red{\frac25}\right)^3=\binom{10}{7}\cdot\frac{3^7\cdot2^3}{5^{10}}=\frac{120\cdot17496}{5^{10}}$$$$p(8)=\binom{10}{8}\cdot\left(\green{\frac35}\right)^8\cdot\left(\red{\frac25}\right)^2=\binom{10}{8}\cdot\frac{3^8\cdot2^2}{5^{10}}=\frac{45\cdot26244}{5^{10}}$$$$p(9)=\binom{10}{9}\cdot\left(\green{\frac35}\right)^9\cdot\left(\red{\frac25}\right)^1=\binom{10}{9}\cdot\frac{3^9\cdot2^1}{5^{10}}=\frac{10\cdot39366}{5^{10}}$$$$p(10)=\binom{10}{10}\cdot\left(\green{\frac35}\right)^{10}\cdot\left(\red{\frac25}\right)^0=\binom{10}{10}\cdot\frac{3^{10}\cdot2^0}{5^{10}}=\frac{1\cdot59059}{5^{10}}$$Alle Wahrscheinlichkeiten addiert ergeben:$$p(\text{genug Personal})=\frac{8\,142\,201}{5^{10}}\approx0,8338=83,38\%$$Gesucht ist die Wahrscheinlichkeit, dass der Wirt nicht genug Personal hat:$$p(\text{zu wenig Personal})=1-p(\text{genug Personal})\approx16,62\%$$