Aufgabe:
Text erkannt:
Sei \( f \) jene Abbildung von \( \mathbb{Q}^{2} \) nach \( \mathbb{Q}^{3} \), welche durch
\( \left(\begin{array}{l} x \\ y \end{array}\right) \mapsto(x+y)\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right) \)
definiert ist. Seien \( e_{1}, e_{2}, e_{3} \) die kanonischen Basisvektoren des \( \mathbb{Q}^{3} \), und sei
\( e_{1}^{\prime}:=e_{1}, e_{2}^{\prime}:=e_{2}, e_{3}^{\prime}:=e_{1}+e_{2}+e_{3} \text {. } \)
(A) \( f\left(\left(\begin{array}{l}1 \\ 1\end{array}\right)\right) \), koordinatisiert nach \( \left(e_{1}, e_{2}, e_{3}\right) \), ist gleich \( \left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \).
(B) \( f\left(\left(\begin{array}{l}1 \\ 1\end{array}\right)\right) \), koordinatisiert nach \( \left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right) \), ist gleich \( \left(\begin{array}{l}0 \\ 0 \\ 2\end{array}\right) \).
(C) Der Vektor aus \( \mathbb{Q}^{3} \) mit den Koordinaten \( \left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \) bezüglich \( \left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right) \) ist im Bild von \( f \) enthalten.
Problem/Ansatz:
B) soll wahr sein A), C) nicht. Könnte mir jemand eine Begründung für C geben und einen Rechenweg für A) und B). Weiß leider nicht genau wie man das macht