Aufgabe:
Sei V ein Vektorraum der endlichen Dimension n ≥ 1, W ein Vektorraum
der endlichen Dimension m ≥ 1,und sei f ∈ L(V, W).
(A) Existieren n verschiedene linear unabhängige Vektoren im Bild
von f, so ist f injektiv.
(B) Existieren m verschiedene linear unabhängige Vektoren
in W \ f(V ), so ist f konstant.
(C) Existieren m verschiedene linear unabhängige Vektoren im Bild
von f, so ist f injektiv.
Problem/Ansatz:
A,C sind klar, laut Lösung ist B jedoch falsch, ich kann aber kein Gegenbeispiel dazu finden bzw. verstehe nicht wieso die Aussage falsch ist.