Fassen wir es nochmal zusammen:
Die Folge der Dreieckszahlen 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... ist:$$d_n = \frac{1}{2}n(n+1)$$und die Folge der magischen Zahlen 1, 5, 15, 34, 65,.... wäre nach A006003:$$m_{n} = \frac{1}{2}n\left(n^{2}+1\right)$$Es gilt$$d_{2} - 2 = m_{1} = 1 \\ d_{8} - 2 = m_{4} = 34$$und Du fragst ob es außer den beiden noch weitere Kombinationen $$d_{n}-2 = m_k\quad n,\,k \in \mathbb{N}$$ gibt. Ist das so richtig?