Aloha :)
zu b) Das folgende Schema zeigt die Summe \(\sum\limits_{k=1}^5k\):
~plot~ 1*(x>0)*(x<5);2*(x>0)*(x<4);3*(x>0)*(x<3);4*(x>0)*(x<2);5*(x>0)*(x<1);5*(x>0)*(x<5);-x+5;[[0|7|0|5]] ~plot~
Die \(5\) Säulen bedecken unterhalb der Diagonalen die Hälfte der Fläche des großen Quadrates mit der Seitenlänge \(5\) und oberhalb der Diagonalen noch \(5\)-mal die Fläche \(\frac12\). Macht zusammen:$$\sum\limits_{k=1}^5k=\frac12\cdot5^2+5\cdot\frac12=\frac{5^2+5}{2}$$
Dieses Bild kann man analog auf die Summe der ersten \(n\) natürlichen Zahlen verallgemeinern:$$\sum\limits_{k=1}^nk=\frac{n^2+n}{2}$$
Die gesuchte Summe können wir daher wie folgt bestimmen:$$\sum\limits_{k=n}^{2n}k=\sum\limits_{k=1}^{2n}k-\sum\limits_{k=1}^{n-1}k=\frac{(2n)^2+(2n)}{2}-\frac{(n-1)^2+(n-1)}{2}$$$$\phantom{\sum\limits_{k=n}^{2n}k}=\frac{4n^2+2n-(n^2-2n+1)-(n-1)}{2}=\frac{3n^2+3n}{2}=\frac{3n(n+1)}{2}$$
zu c) Die Summe der ersten \(n\) ungeraden natürlichen Zahlen beträgt:$$\sum\limits_{k=1}^n(2k-1)=2\sum\limits_{k=1}^nk-\sum\limits_{k=1}^n1=2\cdot\frac{n^2+n}{2}-n\cdot1=(n^2+n)-n=n^2$$