Behauptung: (a + b)^p Ξ a^p + b^p (mod p) für alle a,b ∈ ℤ
Beweis:
Ξ a^p + b^p (mod p) für alle a,b ∈ ℤ
Latextext für allfällige Änderungen: (a+b){ \quad }^{ p }=\quad { a }^{ p }\quad +\quad \left( \begin{matrix} p \\ 1 \end{matrix} \right) { a }^{ p-1 }b\quad +\quad \left( \begin{matrix} p \\ 2 \end{matrix} \right) { a }^{ p-2 }{ b }^{ 2 }\quad +\left( \begin{matrix} p \\ 3 \end{matrix} \right) { a }^{ p-3 }{ b }^{ 3 }\quad …+\left( \begin{matrix} p \\ p-1 \end{matrix} \right) { a }^{ \quad }{ b }^{ p-1 }+{ b }^{ p }\quad \\ Da\quad man\quad aus\quad \left( \begin{matrix} p \\ k \end{matrix} \right) =\frac { p! }{ k!(p-k)! } \quad den\quad Primfaktor\quad p\quad \\ nicht\quad rauskuerzen\quad kann,\quad wenn\quad 0>k<p\quad ist,\quad \\ ist\quad die\quad Summe\quad der\quad inneren\quad Summanden\quad \\ durch\quad p\quad teilbar.\quad modulo\quad p\quad gilt\quad deshalb:\quad \\ (a+b){ \quad }^{ p }=\quad { a }^{ p }\quad +\quad \left( \begin{matrix} p \\ 1 \end{matrix} \right) { a }^{ p-1 }b\quad +\quad \left( \begin{matrix} p \\ 2 \end{matrix} \right) { a }^{ p-2 }{ b }^{ 2 }\quad +\left( \begin{matrix} p \\ 3 \end{matrix} \right) { a }^{ p-3 }{ b }^{ 3 }\quad …+\left( \begin{matrix} p \\ p-1 \end{matrix} \right) { a }^{ \quad }{ b }^{ p-1 }+{ b }^{ p }\quad \\ \equiv \quad { a }^{ p }+{ b }^{ p }\quad modulo\quad p\quad q.e.d.