Aufgabe:
Sei f : (−5, 4) → ℝ und a = 1 und f lasse sich als Potenzreihe um
a entwickeln.
(a) Es sei bekannt, dass die Reihe in x = 3 konvergiert und in x = 7
2 divergiert. Was lässt sich über die Konvergenz der Reihe in den Punkten
x = 2, x = −1 und x = −3
aussagen?
(b) Es sei bekannt, dass die Potenzreihe gegen f (x) für alle x ∈ (0, 4) konvergiert und
limx→4 f ′(x) nicht existiert. Können Sie hieraus den Konvergenzradius der Potenzreihe be-
stimmen und falls ja, welchen Wert hat er?
Problem/Ansatz:
Wir wissen nicht so genau, wie wir diese Aufgabe lösen sollen.