Aloha :)
Es sei \(\alpha\coloneqq\angle(\vec a;\vec b)\) der Winkel zwischen den Vektoren \(\vec a\) und \(\vec b\):
$$(\vec a\times\vec b)^2+(\vec a\cdot\vec b)^2=(\|\vec a\times\vec b\|)^2+(\vec a\cdot\vec b)^2=(ab\sin\alpha)^2+(ab\cos\alpha)^2$$$$\phantom{(\vec a\times\vec b)^2+(\vec a\cdot\vec b)^2}=a^2b^2\sin^2\alpha+a^2b^2\cos^2\alpha=a^2b^2(\sin^2\alpha+\cos^2\alpha)=a^2b^2$$
Das Vektorprodukt ist anti-kommutativ \((\pink{\vec a\times\vec b=-\vec b\times\vec a})\), daher gilt:$$(\vec a+\vec b)\times(\vec a-\vec b)=\underbrace{\vec a\times\vec a}_{=\vec 0}+\vec b\times\vec a\;\underbrace{\pink{-\vec a\times\vec b}}_{=\pink{+\vec b\times\vec a}}-\underbrace{\vec b\times\vec b}_{=\vec 0}=2\vec b\times\vec a$$