Es gilt
\(\begin{aligned} Z_{ y} = \{ ( x, y, z) \in \mathbf{R}^{3} \mid x^{ 2} + z^{ 2}\leqslant 1 \}, \quad Z_{ z} \{ ( x, y, z) \in \mathbf{R}^{3} \mid x^{ 2} + y^{ 2}\leqslant 1\} \end{aligned}\)
und
\(\begin{aligned} Z_{ y} \cap Z_{ z} &= \{ ( x, y, z) \in \mathbf{R}^{3} \mid x^{ 2} + z^{ 2}\leqslant 1, \: x^{ 2}+ y^{ 2}\leqslant 1\} \\ &= \{ ( x, y, z) \in \mathbf{R}^{3} \mid x ^{ 2} \leqslant 1 - z^{ 2}, \: y^{ 2}\leqslant 1 - x^{ 2},\: z \in [ -1, 1] \} .\end{aligned}\)
Ich mache es jetzt mal ganz ausführlich mittels Indikatorfunktionen und Fubini, dann weisst du für die Zukunft, wie es funktioniert:
\(\begin{aligned} \int_{ Z_{ y} \cap Z_{ z} } 1 \,\mathrm{d}( x, y, z) &= \int_{ [ -1, 1] ^{ 3}} \mathbf{1}_{ \left\{ x ^{ 2} \leqslant 1 - z^{ 2}, \: y^{ 2}\leqslant 1 - x^{ 2},\: z \in [ -1, 1] \right\}} \,\mathrm{d}( x, y, z) \\ &= \int_{ -1}^{ 1} \int_{ -1}^{ 1} \int_{ -1}^{ 1} \mathbf{1}_{ \left\{ x^{ 2}\leqslant 1 - z^{ 2}\right\}} \mathbf{1}_{ \left\{ y^{ 2}\leqslant 1 - x^{ 2}\right\}} \mathbf{1}_{ \{ z \in [ -1, 1] \} } \,\mathrm{d}y \,\mathrm{d}x \,\mathrm{d}z \\ &= \int_{ -1}^{ 1} \mathbf{1}_{ \left\{ z \in [ -1, 1] \right\}} \int_{ -1}^{ 1} \mathbf{1}_{ \left\{ x^{ 2}\leqslant 1 - z^{ 2}\right\}} \int_{ -1}^{ 1} \mathbf{1}_{\{ y^{ 2} \leqslant 1 - x^{ 2}\}} \,\mathrm{d}y \,\mathrm{d}x \,\mathrm{d}z \\ &= \int_{ -1}^{ 1} \int_{ -\sqrt{ 1 - z^{ 2}}}^{ \sqrt{ 1 - z^{ 2}} } \int_{ - \sqrt{ 1 - x^{ 2}} }^{ \sqrt{ 1 - x^{ 2}} } 1 \,\mathrm{d}y \,\mathrm{d}x \,\mathrm{d}z = \frac{ 16}{ 3} .\end{aligned}\)
Ich überlasse es dir, das Mehrfachintegral im letzten Schritt auszurechnen, das ist normale eindimensionale Integration.