\(f_{r}(x)=-\frac{1}{r} \cdot x^{2}+\frac{4}{r} \cdot x+2\)
\(-\frac{1}{r_1} \cdot x^{2}+\frac{4}{r_1} \cdot x+2=-\frac{1}{r_2} \cdot x^{2}+\frac{4}{r_2} \cdot x+2~~;~~~r_1\ne r_2\)
\(-\frac{1}{r_1} \cdot x^{2}+\frac{4}{r_1} \cdot x+\frac{1}{r_2} \cdot x^{2}-\frac{4}{r_2} \cdot x=0\)
\(x\cdot(-\frac{1}{r_1} \cdot x+\frac{4}{r_1} +\frac{1}{r_2} \cdot x-\frac{4}{r_2})=0\)
\(x=0\\ \text{ oder }\\-\frac{1}{r_1} \cdot x+\frac{4}{r_1} +\frac{1}{r_2} \cdot x-\frac{4}{r_2}=0~~~~|\cdot r_1r_2\)
\(-r_2x+4r_2+r_1x-4r_1=0\)
\(x(r_1-r_2)-4(r_1-r_2)=0\)
\(x(r_1-r_2)=4(r_1-r_2)~~~|:(r_1-r_2) ; r_1-r_2\ne0\)
\(x=0 \text{ oder } x=4\)
\(P_1(0|2)~~~;~~~P_2(4|2)\)