Aufgabe:
Sei (W, ≺) eine geordnete lineare Menge und W abzählbar. Zeige, dass (W, ≺) isomorph zu einer Teilmenge (ℚ, <) ist.
Problem/Ansatz:
Ich sitze da jetzt irgendwie schon super lange dran und komme einfach auf nichts brauchbares. Ich hätte begonnen damit, dass W = {wn : n∈ℕ } setze und dann eine Abbildung f: W → f(W) konstruiere. Aber ich stehe irgendwie komplett auf dem Schlauch…