0 Daumen
536 Aufrufe

Aufgabe:

blob.png

Text erkannt:

Bei einem Ruderbewerb müssen auf einem See zwei Bojen an den Positionen \( \mathrm{B}_{1}(150 \mid 140) \) und \( \mathrm{B}_{2}(500 \mid 250) \) passiert werden. Danach soll zum Startpunkt zurückgekehrt werden. Ein Ruderteam startet im Punkt A(120|10) (Angaben in Meter).
1) Berechne, in welchem Winkel zur Horizontalen das Team die erste Boje \( B_{1} \) mindestens ansteuern sollte.
2) Ermittle den Winkel zwischen \( \overrightarrow{B_{1} \mathrm{~A}} \) und \( \overrightarrow{B_{1} B_{2}} \).
3) Berechne, welche Wasserfläche durch den Parcours \( A B_{1} B_{2} \) eingeschlossen wird.


Problem/Ansatz:

Kann jemand mir vielleicht bei dieser Aufgabe helfen?

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Bei einem Ruderbewerb müssen auf einem See zwei Bojen an den Positionen B1(150 | 140) und B2(500 | 250) passiert werden. Danach soll zum Startpunkt zurückgekehrt werden. Ein Ruderteam startet im Punkt A(120 | 10) (Angaben in Meter).

a) Berechne, in welchem Winkel zur Horizontalen das Team die erste Boje B1 mindestens ansteuern sollte.


AB1 = [30, 130]
arctan(130/30) = 77.01°

b) Ermittle den Winkel zwischen B1A und B1B2.

B1A = [-30, -130]
B1B2 = [350, 110]

ARCCOS([-30, -130]·[350, 110]/(ABS([-30, -130])·ABS([350, 110]))) = 120.44°

c) Berechne, welche Wasserfläche durch den Parcours A, B1, B2 eingeschlossen wird.

1/2·ABS([-30, -130] ⨯ [350, 110]) = 21100 m²

Skizze

blob.png

Avatar von 489 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community