0 Daumen
294 Aufrufe

Aufgabe:

2•log zur Basis a (x) + 3•log zur Basis a (u hoch 2 + v hoch 2) = 0


Problem/Ansatz:

Ich habe alle Aufgaben geschafft, außer diese hier. Ich bin am verzweifeln… Könnte mir bitte jemand helfen? Vielen vielen Dank!!!!!!

Avatar von

Wende log-Gesetze an:

a*log(b) = logb^a

loga+ logb = log(a*b)

log_a(b) = c

b= a^c

2 Antworten

0 Daumen
 
Beste Antwort

Aloha :)

$$2\log_a(x)+3\log_a(u^2+v^2)=0\quad\big|\log(a^b)=b\log(a)$$$$\log_a(x^2)+\log_a\left((u^2+v^2)^3\right)=0\quad\big|\log(a\cdot b)=\log(a)+\log(b)$$$$\log_a\left(x^2(u^2+v^2)^3\right)=0\quad\big|a^{\cdots}$$$$x^2(u^2+v^2)^3=1\quad\big|\div(u^2+v^2)^3$$$$x^2=\frac{1}{(u^2+v^2)^3}\quad\bigg|\sqrt{\cdots}$$$$x=\frac{1}{\sqrt{(u^2+v^2)^3}}$$Beachte, dass als Argumente für die Logarithmus-Funktion nur positive Wert zugelassen sind, daher entfällt die negative Wurzel als Lösung.

Avatar von 152 k 🚀

Vielen Dank für Ihre Hilfe!!!!! Hat mir sehr weitergeholfen, danke!

0 Daumen

2•log zur Basis a (x) + 3•log zur Basis a (u hoch 2 + v hoch 2) = 0

<=> 2•log zur Basis a (x) = - 3•log zur Basis a (u hoch 2 + v hoch 2)

<=> log zur Basis a (x^2) = log zur Basis a (u hoch 2 + v hoch 2)^(-3)

<=>     x^2 = (u hoch 2 + v hoch 2)^(-3)

<=>    x = (u hoch 2 + v hoch 2)^(-3/2)

Avatar von 289 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community