Text erkannt:
Die Abbildung \( f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}-2^{x} \) besitzt zwei Nullstellen \( x_{1} \) und \( x_{2} \), die sich aber nicht exakt mit Wurzeln, Logarithmen und/oder exp ausdrücken lassen \( \left(x^{3}-2^{x}=0\right. \) kann man nicht auflösen, ohne neue Funktionen einzuführen).
Aufgabe:
Zeigen Sie mit Hilfe des Satzes vom Minimum und Maximum: Im Intervall (x1, x2) besitzt f ein Maximum
Problem/Ansatz:
Vorsicht: Der Satz vom Minimum und Maximum benötigt ein abgeschlossenes Intervall,
in (c) sollen Sie die Existenz des Maximums aber fur das ¨ offene Intervall (x1, x2) zeigen.
Uberlegen Sie, wie Sie dies bewerkstelligen k ¨ önnen.
Wie bei allen Aufgaben gilt: Benutzen Sie nur, was wir bis zu diesem Zeitpunkt in der
Vorlesung besprochen haben (außer es wird explizit erlaubt). Hier also: Keine Ableitungen!