Die Grenzfunktion existiert ja nur für \( x \in [ -1, 1] \). Wir wollen also zeigen, dass
\(\begin{aligned} f\colon [ -1, 1] \to \mathbf{R}, \quad f( x) = \sum_{ k = 1}^{\infty} \frac{ \exp\left( x^{ k}\right) }{ 5k ^{ 2}} \end{aligned}\)
stetig ist.
Es gilt
\(\begin{aligned} \left| \frac{ \exp\left( x^{ k}\right) }{ 5k^{ 2}} \right| \leqslant \frac{e}{ 5k ^{ 2}} \end{aligned}\)
wobei die Summe der Folge auf der rechten Seite konvergiert.
Ist nun \( \{ x_{ n} \}\subset [ -1, 1] \) irgendeine Folge die gegen \( x\) konvergiert, so gilt wegen dem Satz der majorisierten Konvergenz, dass
\(\begin{aligned} \lim_{n \to\infty} f( x_{ n} ) = \lim_{n \to\infty} \sum_{ k = 1}^{ \infty } \frac{ \exp\left( x _{ n} ^{ k}\right) }{ 5k ^{ 2}} = \sum_{ k = 1}^{ \infty } \lim_{n \to\infty} \frac{ \exp\left( x_{ n} ^{ k}\right) }{ 5k^{ 2}} = \sum_{ k = 1}^{\infty} \frac{ \exp\left( x^{ k}\right) }{ 5k^{ 2}} = f( x) .\end{aligned}\)
Alternativ hätte man direkt den Satz der monotonen Konvergenz anwenden können.
Alternative ohne masstheoretische Mittel: Wegen der obigen Abschätzung folgt mittels Weierstrass M-Test, dass die Reihe gleichmässig auf \( [ -1, 1] \) konvergiert.
Nun ist ja
\(\begin{aligned} f( x) = \lim_{n \to\infty} f _{ n} ( x) , \quad f _{ n} ( x) = \sum_{ k = 1}^{ n} \frac{ \exp\left( x^{ k}\right) }{ 5k ^{ 2}} \end{aligned}\)
und da alle \( f _{ n} \) stetig sind, folgt, dass auch \( f\) stetig ist.