Aufgabe:
Wir betrachten
\( f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=\left\{\begin{array}{ll}\sin x, & \text { falls } x=y \\ 0, & \text { sonst. }\end{array}\right. \)
Zeigen Sie, dass es ein v ∈ R^2 mit ||v||^2 = 1 gibt, sodass $$J_f(0,0) \neq D_v f(0,0) $$
Problem/Ansatz:
Die Jacobi Matrix der Funktion an der Stelle (0,0) ist [ 1, 0 ] und die Richtungsableitung an der Stelle wäre bei einem v im R^2 nach Rechnung v1. Jetzt müssen wir ein v finden, für das Jf(0, 0)v ≠ D_vf(0, 0) gilt.
Wenn man z.B. v1= [ 0 , 1 ] wählt erhalten wir Jf(0, 0)v = 0 und D_vf(0, 0) = 0, also für v = [0, 1], gilt Jf(0, 0)v ≠ D_vf(0, 0)? Wir sind verwirrt wissen nicht ob dieser Ansatz richtig ist und wissen nicht mehr weiter.