Wie bestimme ich die Gleichung der Ebene?
Wenn sie sich in S(a|b|c) schneiden und \( \begin{pmatrix} u\\v\\w \end{pmatrix} \) sowie \( \begin{pmatrix} r\\s\\t \end{pmatrix} \) die Richtungsvektoren sind, dann ist z.B. \( \begin{pmatrix} x\\y\\z \end{pmatrix} \)=\( \begin{pmatrix} a\\b\\c \end{pmatrix} \)+k·\( \begin{pmatrix} u\\v\\w \end{pmatrix} \)+j·\( \begin{pmatrix} r\\s\\t \end{pmatrix} \) die Ebenengleichung.
Wenn eine Gerade \vec{x}=\( \begin{pmatrix} a\\b\\c \end{pmatrix} \)+k·\( \begin{pmatrix} u\\v\\w \end{pmatrix} \) und die andere Gerade \vec{x}=\( \begin{pmatrix} d\\e\\f \end{pmatrix} \)+m·\( \begin{pmatrix} u\\v\\w \end{pmatrix} \) heißt, dann ist \vec{x}=\( \begin{pmatrix} a\\b\\c \end{pmatrix} \)+k·\( \begin{pmatrix} u\\v\\w \end{pmatrix} \) +n·\( \begin{pmatrix} a-d\\b-e\\c-f \end{pmatrix} \) die Ebenengleichung.