Aufgabe:
Ein Glücksrad ist in fünf gleichmäßige Flächen unterteilt, die mit den Zahlen von 1 bis 5 durchnummeriert sind. Jede zu drehende Zahl ist damit also gleichwahrscheinlich. Das Glücksrad wird zweimal gedreht, wobei die beiden Drehungen stochastisch unabhängig voneinander erfolgen und somit alle Ergebnisse des zweimaligen Drehens als gleichwahrscheinlich angenommen werden können.
a). Wie viele mögliche Ergebnisse gibt es beim zweifachen Drehen dieses Glücksrads?
b). Stellen Sie die Ergebnismenge des 2-stufigen Zufallsexperiments geeignet dar.
c). Berechnen Sie nachvollziehbar die Wahrscheinlichkeit dafür, dass beim zweimaligen Drehen die Gesamtsumme 7 erzielt wird.
d). Geben Sie ein Intervall an, in welchem Sie die relative Häufigkeit für die Gesamtsumme 7 erwarten, wenn Sie 100 doppelte Drehungen des Glücksrades durchführen.
Problem/Ansatz:
a). 5^2=5×5=25 Ereignisse
b). Ω={(1,1);(1,2);(1,3);(1,4);(1,5);(2,1);(2,2);(2,3);(2,4);(2,5);(3,1);(3,2);(3,3);(3,4);(3,5);(4,1);
(4,2);(4,3);(4,4);(4,5);(5,1);(5,2);(5,3);(5,4);(5,5)
c). P(7)={(2,5);(3,4);(4,3);(5,2)}=4×0,2×0,2×0,2×0,2×0,2=0,00128=0,128% - Da die Wahrscheinlichkeit unabhängig ist, müsste sie ja überall gleich sein oder?
d). P(7)∓1/√100=0,00128∓1/√100=0,00128∓1/10
Intervall [0,10128;-0,09872] - Ich hab die Intervall Berechnung mithilfe des 1/√n Gesetzes bestimmt
Hoffe ihr könnt mir eventuell helfen und sagen ob ich vielleicht richtig liege:)
Danke im Voraus