Aloha :)
Der Abstand der Kurve zum Ursprung ist die minimale Entfernung:$$d(x;y)=\sqrt{x^2+y^2}$$Um die Wurzel los zu werden, können wir genauso gut das Quadrat minimieren, wobei die Nebenbedingung für die Zugehörigkeit zu \(E\) eingehalten werden muss:$$f(x;y)=x^2+y^2\to\text{Min!}\quad;\quad e(x;y)=x^2+xy+y^2=16$$
Nach Lagrange muss im Extremum der Gradient der zu optimierenden Funktion eine Linearkombination der Gradienten aller konstanten Nebenbedingungen sein. Da wir hier nur eine solche Nebenbedingung haben, heißt das:$$\operatorname{grad}f(x;y)\stackrel!=\lambda\operatorname{grad}e(x;y)\implies\binom{2x}{2y}=\lambda\binom{2x+y}{2y+x}$$Um den Lagrange-Multiplikator loszuwerden, dividieren wir die Gleichung für die erste Koordnate durch die der zweiten Koordinate:$$\frac{2x}{2y}=\frac{\lambda(2x+y)}{\lambda(2y+x)}\implies x(2y+x)=y(2x+y)\implies \pink{x^2=y^2}$$
Wir setzen daher \(y=\pm x\) in die Nebenbedingung \(e(x;y)\) ein :$$y=x\implies x^2+x^2+x^2=16\implies x^2=\frac{16}{3}\implies x=y=\pm\frac{4}{\sqrt 3}$$$$y=-x\implies x^2-x^2+x^2=16\implies x^2=16\implies x=\pm4\;;\;y=\mp4$$
Wir haben also insgesamt 4 mögliche Kandidaten für Extrema:$$K_1\left(\frac{4}{\sqrt3}\bigg|\frac{4}{\sqrt3}\right)\quad;\quad K_2\left(-\frac{4}{\sqrt3}\bigg|-\frac{4}{\sqrt3}\right)\quad;\quad K_3(4|-4)\quad;\quad K_4(-4|4)$$
Einsetzen ergibt, dass \(K_1\) und \(K_2\) die beiden Minima sind und \(K_3\) und \(K_4\) die Maxima.
Der minimale Abstand der Kurve vom Ursprung ist daher: \(\quad \pink{d_{\text{min}}=\frac{4\sqrt2}{\sqrt3}}\)