Zielfunktion:
\(L(r,h)=2rπ+h\) soll minimal werden.
NB:
\(V(r,h)=r^2*π*h=2dm^{3}\) →\(h=\frac{2}{r^2π}\)
\(L(r)=2rπ+\frac{2}{r^2π}=\frac{2r^3π^2+2}{r^2π}\)
\(L´(r)=\frac{6r^2π^2*r^2π-(2r^3π^2+2)*2rπ }{r^4π^2}=\frac{2r^4π^3-4rπ }{r^4π^2}=\frac{2r^3π^2-4 }{r^3π}\)
\(\frac{2r^3π^2-4 }{r^3π}=0\)
\(r^3 =\frac{2}{π^2}\)
\(r =\sqrt[3]{\frac{2}{π^2}}=(\frac{2}{π^2})^{\frac{1}{3}}≈0,59dm \) → \(h=\frac{2}{(\frac{2}{π^2})^{\frac{2}{3}}π}≈1,08dm\)