0 Daumen
439 Aufrufe

Aufgabe:

1. Begründe ob es sich um ein Zufallsexperiment handelt. Welche Ergebnisse sind möglich?

a) Werfen eines Würfels und ablesen der oben liegenden Augenzahl

b) Befragen eines Schülers nach dem Wochentag, an dem er Geburtstag hat

c) Feststellen der Himmelsrichtung, in der die Sonne am Mittag steht

d) Messen der Länge eines Klassenzimmers auf Zentimeter genau


2. Ina würfelt mit zwei Würfeln. Schreibe die Ergebnismenge auf, wenn das Versuchsergebnis

a) die Summe der Augenzahlen ist

b) das Produkt der Augenzahlen ist


Problem/Ansatz:

1. a) es handelt sich um ein Zufallsexperiment

Ergebnisse sind 1,2,3,4,5,6

b) kein ZE

c) kein ZE

d) kein ZE


2. a) 2, 3,4,5,6,7,8,9,10,11,12

b) 1, 2,3,4,5,6,8,9, 12,16, 18,20, 24,25 ,36

Avatar von

1 Antwort

0 Daumen

Die Beispiele in Aufgabe 1 sind meiner Meinung nach nicht so gut gewählt.


b) Befragen eines Schülers nach dem Wochentag, an dem er Geburtstag hat

Soll das ein bestimmter (schon vorher gewählter) Schüler sein oder ein beliebig herausgegriffener ?

c) Feststellen der Himmelsrichtung, in der die Sonne am Mittag steht

Kommt darauf an, wie genau der Mittagszeitpunkt und die Himmelsrichtung bestimmt werden sollen.

d) Messen der Länge eines Klassenzimmers auf Zentimeter genau

Das Ergebnis ist sicher ein Stück weit zufällig, je nachdem wie die Messung dann tatsächlich erfolgt. Ich würde wetten, dass von zehn Leuten, die die Messung durchführen, nicht alle das exakt gleiche Ergebnis finden werden.

Avatar von 3,9 k

Ich denke das soll ein beliebig herausgegriffener Schüler sein

Ich denke das soll ein beliebig herausgegriffener Schüler sein

Dann wäre das ein Zufallsexperiment

Und handelt es sich auch um ein beliebig herausgegriffenes Klassenzimmer? Oder nur das Klassenzimmer einer Schule? Oder sogar nur ein ganz bestimmtes, vorher gewähltes Klassenzimmer?

Ich glaube, die Klassenzimmer meiner Grundschule waren alle normiert. D.h. jedes Klassenzimmer hatte dieselben Abmessungen. Auf Zentimeter genau sollten die Längen also übereinstimmen. Würde man dort also eines der Klassenzimmer wählen, wäre es kein Zufallsexperiment.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community