Aufgabe:
In einer Petrischale wird eine Bakterienkultur beobachtet, die sich zunächst vermehrt und nach einigen Stunden aufgrund eines äußeren Einflusses abstirbt.
Die Funktion f mit f(x) = -0,06x^3+ 0,6x^2 + 0,8x + 2 beschreibt näherungsweise das Wachstum dieser Bakterienkultur, wobei f(x) (in cm^2) die mit Bakterien bedeckte Oberfläche der Petrischale angibt und x die Zeit in Stunden nach
Versuchsbeginn (x= 0).
f)
Bestimmen Sie rechnerisch die lokalen Extrempunkte des Graphen von f.
Interpretieren Sie dann das Ergebnis im Sachzusammenhang:
Geben Sie einen sinnvollen Definitionsbereich an.
Zu welchem Zeitpunkt bedeckt die Bakterienkultur die größte Fläche? Wie groß ist der maximale Flächeninhalt?
Problem/Ansatz:
Wie bestimmte ich den Definitionsbereich?