Ein Fehler liegt ganzbestimmt darin
---
q=0,8000006092
0.8= 1- 100
P=0,8-1*100
P= 91%
---
Die AfA hat den Abschreibungssatz p
\(p(RestW_n) \, := \, 1 - \left(\frac{RestW_n}{ANWert} \right)^{\frac{1}{ND}}\)
was zu
\(\small {\left(\begin{array}{rrr}\texttt{1\phantom{\texttt{.00}}}&\texttt{200000\phantom{\texttt{.00}}}&\texttt{39999.8\phantom{\texttt{0}}} \\ \texttt{2\phantom{\texttt{.00}}}&\texttt{160000.2\phantom{\texttt{0}}}&\texttt{31999.88} \\ \texttt{3\phantom{\texttt{.00}}}&\texttt{128000.32}&\texttt{25599.94} \\ \texttt{4\phantom{\texttt{.00}}}&\texttt{102400.38}&\texttt{20479.97} \\ \texttt{5\phantom{\texttt{.00}}}&\texttt{81920.41}&\texttt{16384\phantom{\texttt{.00}}} \\ \texttt{6\phantom{\texttt{.00}}}&\texttt{65536.41}&\texttt{13107.22} \\ \texttt{7\phantom{\texttt{.00}}}&\texttt{52429.19}&\texttt{10485.79} \\ \texttt{8\phantom{\texttt{.00}}}&\texttt{41943.41}&\texttt{8388.64} \\ \texttt{9\phantom{\texttt{.00}}}&\texttt{33554.77}&\texttt{6710.92} \\ \texttt{10\phantom{\texttt{.00}}}&\texttt{26843.85}&\texttt{5368.74} \\ \texttt{11\phantom{\texttt{.00}}}&\texttt{21475.1\phantom{\texttt{0}}}&\texttt{4295\phantom{\texttt{.00}}} \\ \end{array}\right)}\)
führt