Warum hier 2 Tilde und 1,2 Tilde?
Aus Deiner Frage habe ich geschlossen, dass es sich bei dem 'Tilde' um die Maschinenzahl handelt. Wenn \(x\) irgendeine Zahl ist, dann ist \(\tilde{x}\) die zugehörige Maschinenzahl So hab ich die Nomenklatur in Deiner Frage verstanden.
Bei der Zahl \(x=2\) ist das einfach: \(\tilde{2}=2\)
Bei \(x=1,2\) ist das nicht so einfach, da \(1,2\) im Binärsystem eine Zahl mit periodischer Nachkommastelle ist. \(1,2= 1,\overline{0011}_2\). D.h. dass diese Zahl als Maschinenzahl gerundet werden muss. Unabhängig von der Art der Rundung (mathematisch oder kaufmännisch) ist dies bei 6 Ziffern im Binärsystem immer$$\tilde{1,2} = 1,00110_2$$
Warum hast du bei 2 Tilde 22 und bei 1.2 Tilde 21?
Um die Mantisse in das identische Format zu bringen. Mit einer 0 vor dem Komma und die erste Nachkommastelle ist eine 1. Das entspricht der normierten Mantisse. Du hast uns bis jetzt ja nicht verraten, wie Ihr die Mantisse in der Vorlesung behandelt ;-)
Die Mantisse wird ja letzlich im Speicher eines Computers abgelegt. Und im Fall von M(2,6,3) sind für die Mantisse 6 Bits vorgesehen (Bits sind die Ziffern des Binärsystems). Und daher stellt man die Zahl so um, dass sie im Speicher abgelegt werden kann. So wird aus der Zahl 2 die Maschinenzahl \(0.100000_2 \cdot 2^2\) und aus 1,2 wird \(0.100110_2 \cdot 2^1\). Gespeichert werden die 6 Ziffern nach dem Komma und der Exponent - natürlich bei M(2,6,3) auch im Binärformat als 3-Bit-Zahl.