\( \frac{n^2-1}{2n+n\sqrt{n}} -\sqrt{n}= \frac{n^2-1-2n\sqrt{n}-n^2}{2n+n\sqrt{n}} = \frac{-1-2n\sqrt{n}}{2n+n\sqrt{n}} \).
Das hast du schon einmal richtig. Jetzt teile Zähler und Nenner durch die höchste vorkommende Potenz von n, und das ist \(n^{1,5}\) bzw \(n\sqrt{n}\).
Die anschließende Grenzwertbildung liefert \( \frac{0-2}{0+1} \).