Man kann die zwei gegebenen Gleichungen mehrmals ausnutzen, um ohne Wurzeln den gesuchten Wert aus b) direkt auszurechnen.
(1): $$1= (u+v)^2 = u^2+v^2 +2uv =2 + 2uv$$$$ \Rightarrow \boxed{uv = -\frac 12}$$
Nun gilt weiterhin
(2): $$(u^5+v^5)(u^6+v^6)= u^{11}+ v^{11} + (uv)^5(u+v)$$$$\Rightarrow \boxed{u^{11}+ v^{11} = (u^5+v^5)(u^6+v^6) + \frac 1{32}}$$Wir brauchen nur noch
(3): $$2\cdot 1 = (u^2+v^2)(u+v) = u^3+v^3 + (uv)(u+v)$$$$\Rightarrow \boxed{u^3+v^3 = 2+\frac 12 =\frac 52}$$
Damit erhalten wir
(4): $$(u^3+v^3)^2 = u^6+v^6 + 2(uv)^3 $$$$\Rightarrow \boxed{u^6+v^6 = \frac{25}4 + \frac 14 = \frac{13}2}$$
(5): $$\frac 52 \cdot 2 = (u^3+v^3)(u^2+v^2) = u^5+v^5 + (uv)^2(u+v) $$$$\Rightarrow \boxed{u^5+v^5 = 5 - \frac 14 = \frac{19}4}$$
Einsetzen in (2) gibt
$$\boxed{u^{11}+ v^{11} = \frac{19}4\cdot \frac{13}2+ \frac 1{32} = \frac{989}{32}}$$
Nachtrag zum Teil a):
Wir wissen, dass \(u+v=1\) und \(uv = -\frac 12\). Laut Vieta sind dann \(u,v\) die Lösungen der quadratischen Gleichung: $$x^2 - (u+v)x + uv= x^2-x-\frac 12 = 0$$ Lösen und Teil a) ist fertig.