\( \sum \limits_{k=1}^{4} \sum \limits_{i=0}^{3} \frac{i^{2}+4}{k} \)
\( = \sum \limits_{k=1}^{4} ( \frac{0^{2}+4}{k} +\frac{1^{2}+4}{k} +\frac{2^{2}+4}{k} +\frac{3^{2}+4}{k} )\)
\( = \sum \limits_{k=1}^{4} ( \frac{4}{k} +\frac{5}{k} +\frac{8}{k} +\frac{13}{k} )\)
\( = \sum \limits_{k=1}^{4} ( \frac{30}{k} )\)
\( = \frac{30}{1} +\frac{30}{2} +\frac{30}{3} +\frac{30}{4} \)=30+15+10+7,5=62,5