\( (3 k+5)^{2}-k(7 k-3)=29 k+45 \)
\( 9k^2+30k+25-7k^2+3k=29 k+45 \)
\( 9k^2+30k-7k^2+3k-29 k=45-25=20 \)
\( 2k^2+4k=20 \)
\(k^2+2k=10 \) → quadratische Ergänzung
\(k^2+2k+1=10 +1\) → 1.Binom
\((k+1)^2=11 | \sqrt{~~}\)
1.)
\(k+1=\sqrt{11}\)
\(k_1=-1+\sqrt{11}\)
2.)
\(k+1=-\sqrt{11}\)
\(k_2=-1-\sqrt{11}\)