Aufgabe:
Beweisen Sie Satz \( * \) aus der Vorlesung, d.h. seien \( (G, \cdot) \) und \( \left(G^{\prime}, *\right) \) Gruppen, \( e \) das neutrale Element von \( G \) und \( e^{\prime} \) das neutrale Element von \( G^{\prime} \). Weiterhin sei \( \varphi: G \rightarrow G^{\prime} \) ein Homomorphismus. Zeigen Sie: φ ist injektiv genau dann, wenn Kern(φ) = {e}