\(\displaystyle {n+17\over n+3} = 1+{14\over n+3} \)
\(\displaystyle T(14) = \{1,2,7,14\} \)
\(\displaystyle {14\over n+3} \)
ist kürzbar, falls
\(\displaystyle n+3 \)
durch (1), 2, 7 oder (14) teilbar ist.
\(\displaystyle 2 \mid n+3 \iff n = 2k-3 \)
\(\displaystyle 7 \mid n+3 \iff n = 7k-3, \quad k \in \Bbb Z \)