Ein formaler Beweis, der direkt auf der Definition von Folgenkonvergenz basiert, könnte etwa wie folgt aussehen:
Es seien \((a_n)\) eine Nullfolge und \((b_n)\) eine beschränkte Folge. Das bedeutet
(1) Es existiert ein \(K\in\R\) mit \(K>0\), so dass \(\lvert b_n\rvert\le K\) für alle \(n\in\N\) ist.
(2) Zu jedem \(\varepsilon>0\) existiert ein \(N\in\N\), so dass \(\rvert a_n\lvert\le\frac\varepsilon K\) für alle \(n>N\) gilt.
Für alle \(n>N\) gilt deshalb$$\quad\lvert a_n{\cdot}b_n-0\rvert=\lvert a_n\rvert{\cdot}\lvert b_n\rvert\le K\cdot\frac\varepsilon K=\varepsilon.$$Daraus folgt die Behauptung.