\( |\cos t+i \sin t-1|=2\left|\sin \left(\frac{t}{2}\right)\right| \)
<=> \( |\cos t - 1 +i \sin t|=2\left|\sin \left(\frac{t}{2}\right)\right| \)
<=> \( \sqrt{ (\cos t - 1) ^2 + \sin^2 t }=2\left|\sin \left(\frac{t}{2}\right)\right| \)
alles nicht negativ, da kann ma quadrieren
<=> \( (\cos t - 1) ^2 + \sin^2 t =4\sin^2 \left(\frac{t}{2}\right) \)
<=> \( \cos^2 t -2\cos t + 1 + \sin^2 t =4\sin^2 \left(\frac{t}{2}\right) \)
<=> \( 1 -2\cos t + 1 =4\sin^2 \left(\frac{t}{2}\right) \)
<=> \( 2 -2\cos t =4\sin^2 \left(\frac{t}{2}\right) \) |:2
<=> \( 1 -\cos t =2\sin^2 \left(\frac{t}{2}\right) \)
<=> \( 1 -\cos (\frac{t}{2}+\frac{t}{2}) =2\sin^2 \left(\frac{t}{2}\right) \)
Additionstheorem anwenden
<=> \( 1 - (\cos^2 (\frac{t}{2}) -\sin^2(\frac{t}{2}) ) =2\sin^2 \left(\frac{t}{2}\right) \)
<=> \( 1 - \cos^2 (\frac{t}{2}) + \sin^2(\frac{t}{2}) ) =2\sin^2 \left(\frac{t}{2}\right) \)
<=> \( \sin^2 (\frac{t}{2}) + \sin^2(\frac{t}{2}) ) =2\sin^2 \left(\frac{t}{2}\right) \)
BINGO!