Text erkannt:
Gegeben sei der Vektorraum \( \operatorname{Pol}_{2}(\mathbb{R}) \) der reellen Polynome vom Grad höchstens 2 mit der Basis \( P: p_{1}, p_{2}, p_{3} \), wobei \( p_{1}(x)=x^{2}+2, p_{2}(x)=-2 x, p_{3}(x)=2 \). Der Vektorraum \( \mathbb{R}^{3} \) sei mit der Standardbasis \( E \) versehen. Weiter sei die lineare Abbildung \( \alpha: \operatorname{Pol}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3} \) gegeben durch
\( p \mapsto\left(\begin{array}{c} -2 p(0) \\ p^{\prime}(0)-p(2) \\ p^{\prime \prime}(1)-3 p^{\prime}(3) \end{array}\right) . \)
Dabei bezeichnen \( p^{\prime} \) bzw. \( p^{\prime \prime} \) die erste bzw. die zweite Ableitung von \( p \).
Bestimmen Sie die beschreibende Matrix
Aufgabe:
Hallo, bei dieser Aufgabe komme ich leider nicht weiter. Wäre super, wenn mir jemand einen Ansatz zum Vorgehen geben könnte.
LG