Aufgabe:
Text erkannt:
11. Von einem Flugplatz, der in der \( x_{1} x_{2} \)-Ebene eines Koordinatensystems mit der Einheit \( k m \) liegt, hebt ein Flugzeug im Punkt \( A(4|1| 0) \) von der Startbahn ab. Es fliegt in den ersten drei Minuten auf einem Kurs, der annähernd durch die Gerade \( g: \vec{x}=\left(\begin{array}{l}0,4 \\ 0,1 \\ 0\end{array}\right)+r \cdot\left(\begin{array}{l}1,8 \\ 1,4 \\ 0,3\end{array}\right) \) mit \( r \) in Minuten ab dem Abheben beschrieben werden kann. Nach drei Minuten ändert der Pilot seinen Kurs und fliegt in den nächsten 20 Minuten ohne weitere Kursänderung pro Minute um den Vektor \( \vec{u}=\left(\left.\begin{array}{l}2,2 \\ 1,9 \\ 0,12\end{array} \right\rvert\,\right. \) weiter.
a) Mit welcher Geschwindigkeit hebt die Maschine vom Boden ab? In welchem Punkt befindet sich das Flugzeug 10 Minuten später? Welche Geschwindigkeit hat es zu diesem Zeitpunkt?
b) Ein Sportflugzeug befindet sich in dem Moment, in dem das Flugzeug in A abhebt, im Punkt \( B(22|-18| 3,2) \). Es bewegt sich über längere Zeit pro Minute um den Vektor \( \vec{v}=\left(\begin{array}{c}1,4 \\ 2,5 \\ 0\end{array}\right) \) weiter. Wie weit sind die beiden Flugzeuge 10 Minuten nach dem Abheben des Flugzeugs voneinander entfernt?
c) Untersuchen Sie, ob es zu einer Kollision kommen könnte, wenn die beiden Flugzeuge ihren Kurs beibehalten.
Problem/Ansatz:
Ich habe bei b) als Entfernung so 5.82 km, also F1 Länge 30.99km - F2 Länge 36.81 km. Wollte wissen ob das richtig ist. Und bei c) weiß ich nichts.