Es sei K ein Körper und es seien $$ \vec{u}_{1} , \: ... \:,\vec{u}_{k} \: \in K^{n} \:\: und \:\:\ vec{w}_{1} , \: ... \: , \vec{w}_{l} \: \in K^{n} \newline Und \: \: die \: \: linearen \:\: Unterräume \: \: U , \: \: W \: \: mit: \newline U=Lin( \vec{u}_{1} , \: ... \: , \vec{u}_{k}) \: \: und \: \: W=Lin( \vec{w}_{1} , \: ... \: , \vec{w}_{l}) \: \: von \: \: K^{n} \: \: gegeben. $$
(a) Wie kann man entscheiden, ob $$U\subset W$$ gilt?
(b) Wie kann man eine Basis von $$U\cap W$$ bestimmen?
(c) Wie kann man eine Basis von $$U+W$$ bestimmen?
Dabei geht es nicht um konkrete Vektoren, sondern um das generelle Vorgehen.
Aufgabe (a) habe ich bereits fertig und lautet grob so: "Falls die Vektoren alle Vektoren offensichtlich linear unabbhängig sind, folgt aus 'k>l', dass U keine Teilmenge von W sein kann. Falls nicht, muss man für jeden Vektor u1 bis uk prüfen, ob er in W liegt"
Bei (b) wäre mein Ansatz erst den "Schnitt" UVR zu bilden und dann davon eine Basis zu bilden. Ist das Richtig? Gibt es einfachere oder schönere Lösungen?