Hallo :-)
Ich sehe hier zwei wesentliche Möglichkeiten, wie du hier rangehen könntest:
1.) Überführe deine rekursiv definierte Folge in eine explizite (induktiv beweisen) und mache davon eine Grenzwertbetrachtung, zb mit Sandwhichprinzip...
2.) Untersuche deine Rekursion auf Beschränktheit und Monotonie (zb induktiv). Liegt beides vor, so kannst du die Konvergenz deiner Rekursion schlussfolgern. Den Grenzwert \(g\) (falls er existiert!) erhältst du dann durch folgende Gleichheit $$ g=\lim x_{n+1}=\lim \frac{3}{5}\cdot x_n = \frac{3}{5} \cdot \lim x_n=\frac{3}{5}\cdot g, $$
da \(\lim x_{n+1}=\lim x_n\) gilt.