Aufgabe:
Hallo
es soll S partielle nach p Schlange abgeleitet werden. Den gegebenen Term für S habe ich zunächst integriert um dann die partielle Ableitung zu bilden.
Problem/Ansatz:
Dabei kommt jedoch nicht der für q gegebene Term heraus
Wie kann man S nach pSchlange ableiten ohne zu integrieren?
Text erkannt:
10. Übung TPI WiSe2023/24
S Aufgabe 26 (7 Punkte): Hamilton-Jacobi Gleichungen und harmonischer Oszillator \( (3+2 \) +2 )
Wir betrachten den harmonischen Oszillator mit seiner Hamiltonfunktion \( H=\frac{p^{2}}{2 m}+\frac{1}{2} m \omega_{0}^{2} q^{2} \).
(a) Verwenden Sie die Hamilton-Jacobi Differentialgleichungen für die Wirkung \( S(q, \bar{p}, t) \) mit dem Separationsansatz:
\( S(q, \bar{p}, t)=W(q, \bar{p})+V(t, \bar{p}), \)
wobei \( \bar{p}=\alpha \) eine Konstante ist. Zeigen Sie, dass:
\( S(q, \bar{p}, t)=m \omega_{0} \int \mathrm{d} q\left(\sqrt{\frac{2 \bar{p}}{\omega_{0}^{2} m}-q^{2}}\right)-\bar{p} t . \)
Hinweis: Identifizieren Sie die auftretende Integrationkonstante \( \alpha \) mit der Konstanten \( \bar{p}=\alpha \).
(b) Verwenden Sie \( \bar{q}=\frac{\partial S}{\partial \bar{p}} \), um zu zeigen, dass
\( q=\frac{1}{\omega_{0}} \sqrt{\frac{2 \alpha}{m}} \sin \left(\omega_{0}(\bar{q}+t)\right) . \)
Was ist \( \bar{q} \) für eine physikalische Größe?
(c) Verwenden Sie \( p=\frac{\partial S}{\partial q} \), um zu zeigen, dass
\( p=\sqrt{2 m \alpha} \cos \left(\omega_{0}(\bar{q}+t)\right) . \)
Interpretieren Sie die Ergebnisse!
2