Wenn Du LaTeX verwendest, dann mach es doch gleich sorgfältig.
So, jetzt gibt es zwei Möglichkeiten:
1. rechnerisch: Wir wollen \(f(x_1,x_2,x_3)= x_1^2+16x_2^2+9x_3^2\) unter der Nebenbedingung \(x_1^2+x_2^2+x_3^2=1\) minimieren (wenn man die Wurzel quadriert, ändert sich das gesuchte \(x\) nicht, rechnet sich aber leichter; man muss dann nur am Ende noch die Wurzel ziehen). Das kann man mit Lagrange-Multiplikator durchrechnen. Dabei sauber die Fallunterscheidungen durchrechnen. Dabei stellt man fest, dass nur \(x\) auf den Koordinatenachsen in Frage kommen, den Rest kann man leicht durchrechnen.
2. geometrisch: die Nebenbedingung lautet ja, dass \(x\) auf der Einheitskugel liegt (genauer: auf deren Oberfläche). Die Abbildung bewirkt nun eine Streckung in Richtung der Koordinatenachsen, daher muss man nur die Punkte auf den Koordinatenachsen prüfen. Rest wie am Ende von Lösung 1.
Auf https://de.wikipedia.org/wiki/Nat%C3%BCrliche_Matrixnorm#Beispiel
ist ein Beispiel für die geometrische Lösung in \(\R²\), wobei es dort noch komplizierter ist, weil eine Drehung drin ist (haben wir hier ja nicht).