Ja mit Lagrange. Ich weiß leider nicht wie das genau geht.
Ok - die Frage ist dann: wo genau ist Dein Problem?
Die Hauptbedingung ist das was es zu minimieren oder zu maximieren gilt. Also in diesem Fall ist es der Abstand zum Ursprung (in 3D). Und die Nebenbedingung ist, dass dies nicht für einen vogelwilden Punkt im Raum gelten soll, sondern für einen Punkt, der in der Menge \(T\) liegt. Formal:$$\sqrt{x^2+y^2+z^2} \to \min \quad \text{NB.:}\space z=\frac{1}{xy}, \quad x,y \ne 0$$da die Wurzelfunktion streng monoton steigend ist, kann man das etwas handlicher formulieren:$$x^2+y^2+z^2 \to \min \quad \text{NB.:}\space xyz -1 = 0$$dann sind die Ableitungen schöner ;-)
Jetzt stellst Du die Lagrange-Gleichung auf:$$\mathcal{L}(x,y,z,\lambda) = x^2+y^2+z^2 + \lambda(xyz -1)$$und leitest nach \(x\), \(y\) und \(z\) ab. An den kritischen Punkten müssen diese Ableitungen dann zu 0 werden$$\frac{\partial L}{\partial x} = 2x + \lambda yz\to 0 \\ \frac{\partial L}{\partial y} = 2y + \lambda xz\to 0 \\ \frac{\partial L}{\partial z} = 2z + \lambda xy\to 0 $$jetzt multipliziere die erste Gleichung mit \(x\), die zweite mit \(y\) und die dritte mit \(z\) und daraus folgt dann$$\implies 2x^2 = 2y^2 = 2z^2$$D.h. die Beträge von \(x\), \(y\) und \(z\) sind in den kritischen Punkten identisch. Und zusammen mit der Nebenbedingung folgt$$xyz=1 \land |x|=|y|=|z| \implies |x|^3=1 \implies |x|=|y|=|z| = 1$$D.h. die Koordinaten sind entweder \(1\) oder \(-1\) und die Anzahl der negativen \(1\)'en ist gerade, damit das Produkt \(xyz\) wieder positiv wird. Somit ist eine Lösung \((1,\,1,\,1)\) und zwei der \(1\)'en kannst Du jeweils noch mit einem Minus versehen, so dass Du dann auf die vier Lösungen kommst.
Sei noch erwähnt, dass Du damit nur eine notwendige, aber keine hinreichende Bedingung für ein Minimum gefunden hast. Dass es sich um vier Minima handelt wird aber schon aus dem Funktionsverlauf offensichtlich (s. mein Kommentar unter Deiner Frage).
Gruß Werner