Wie kann man ständig so vom eigentlichen Thema abschweifen...
Nun, die Relevanz liegt ja ganz offensichtlich bei der Schwierigkeit der Berechnung derartiger Größen (behandelt man in der numerischen Mathematik). Man sollte wissen, welche Probleme auftreten können, wenn man mit derartigen Zahlen arbeitet und dass Software dann falsche Ergebnisse liefern kann, was zu erheblichen Problemen führt.
Vielleicht ein für dich relevantes Beispiel: betrachte einmal die Bernoulli-Formel. Der Binomialkoeffizient kann verdammt groß werden, wohingegen die Größen \(p^k\) bzw. \((1-p)^{n-k}\) sehr klein werden können. Am Ende erhält man dennoch immer ein Ergebnis zwischen 0 und 1. Handelsübliche Taschenrechner können diese Formel für große Werte von \(n\) und \(k\) gar nicht mehr berechnen und spucken dann einen Fehler aus. Bereits \(\binom{100}{50}\) liefert einen Wert in der Größenordnung \(10^{29}\). Entsprechend klein müssen dann die anderen Faktoren sein. Man braucht also Rechenverfahren, mit denen man derartige Formeln auswerten kann, ohne auf diese Probleme zu stoßen.