Unser Dozent hat uns folgende Aufgabe aus HA gegeben und auch schon die Lösung hochgeladen, jedoch verstehe ich die Beweisführung nicht ganz.
Sei \( G \coloneqq \{A\in \R^{2\times2} | \exists B\in \R^{2\times2} \text{ mit } AB=BA=E \} \).
Aufgabe:
Wir bezeichnen \( A^{-1} \) das inverse Element zu der Matrix \( A\in G \). Zeigen Sie, dass für alle \( A,B\in G \) gilt:
\( (A\cdot B)^{-1} = B^{-1}\cdot A^{-1} \).
Lösung:
Es gilt: \( (A\cdot B)\cdot (B^{-1}\cdot A^{-1}) = A\cdot (B\cdot B^{-1})\cdot A^{-1} = A\cdot E\cdot A^{-1} = E \) und \( (B^{-1}\cdot A^{-1})\cdot (A\cdot B) = B^{-1}\cdot (A^{-1}\cdot A)\cdot B = B^{-1}\cdot E\cdot B = E \).
Somit folgt: \( (A\cdot B)^{-1} = B^{-1}\cdot A^{-1} \).
Meine Frage: Ich verstehe, was hier in den Gleichungen gemacht wird, aber nicht, wieso das als Beweis gültig sein soll. Wir multiplizieren die rechte Seite (der z.z. Gleichung) mit (X*Y), mal von rechts, mal von links. Aber warum lassen wir das -1 weg?
Viele Grüße