Aufgabe 2:
Gegeben sei die Koordinatentransformation
\( \begin{array}{c} \boldsymbol{\Phi}(r, \varphi)=\left(\begin{array}{c} x(r, \varphi) \\ y(r, \varphi) \end{array}\right)=\left(\begin{array}{c} 2 r \cos \varphi \\ 3 r \sin \varphi \end{array}\right) \\ \operatorname{mit}(r, \varphi) \in Q:=] 0,1] \times]-\frac{\pi}{2}, \frac{\pi}{2}[. \end{array} \)
a) Man berechne \( \boldsymbol{J} \boldsymbol{\Phi}(r, \varphi) \) und \( \operatorname{det}(\boldsymbol{J} \boldsymbol{\Phi}(r, \varphi)) \) sowie
b) \( \boldsymbol{\Phi}^{-1}(x, y), \boldsymbol{J} \boldsymbol{\Phi}^{-1}(x, y) \) und \( \operatorname{det}\left(\boldsymbol{J} \boldsymbol{\Phi}^{-1}(x, y)\right) \).
c) Man zeichne \( Q \) und \( \boldsymbol{\Phi}(Q) \).
Problem:
Leider weiß ich bei der Aufgabe gar nicht weiter