Aloha :)
Das Trägheitsmoment einer Massendichte \(\rho(\vec r)\) ist definiert als:$$I=\int\limits_V{\vec r\,}^2_\perp\,\rho(\vec r)\,dV$$Darin ist \(\vec r_\perp\) der orthogonale(!) Abstand von der Rotationsachse.
Hier wird das Flächenträgheitsmoment gesucht. Das Volumen \(V\) wird dabei durch die Fläche \(F\) ersetzt und die Massendichte \(\rho(\vec r)\) wird durch die konstante Flächendichte \(1\,\frac{\mathrm{kg}}{\mathrm m^2}\) ersetzt:$$I=\int\limits_F{\vec r\,}^2_\perp\,dF$$
Bei der Rotation der Fläche zwischen der x-Achse und der Funktion \(f(x)\) um die \(x\)-Achse, ist der senkrechte Abstand des Punktes \((x|y)\) von der Rotationsachse gleich \(y\), daher gilt:$$I_x=\int\limits_{x=a}^{b}\;\int\limits_{y=0}^{f(x)} y^2\,dx\,dy=\int\limits_{x=a}^{b}\left(\;\;\int\limits_{y=0}^{f(x)} y^2\,dy\right)\,dx=\int\limits_{x=a}^{b}\left[\frac{y^3}{3}\right]_{y=0}^{f(x)}dx=\frac13\int\limits_{x=a}^bf^3(x)\,dx$$
Bei der Rotation der Fläche um die \(y\)-Achse ist der senkrechte Abstand des Punktes \((x|y)\) von der y-Achse gleich \(x\), daher gilt:$$I_y=\int\limits_{x=a}^{b}\;\int\limits_{y=0}^{f(x)} x^2\,dx\,dy=\int\limits_{x=a}^{b}\left(x^2\int\limits_{y=0}^{f(x)} dy\right)\,dx=\int\limits_{x=a}^bx^2\left[y\right]_{y=0}^{f(x)}dx=\int\limits_{x=a}^bx^2\,f(x)\,dx$$
Das Moment \(I_{xy}\) hat eine Sonderstellung. Es ist ein Element des Trägheitstensors. Es beschreibt nicht die Rotation um eine Achse, sondern ist ein sogenanntes "Deviationsmoment". Es ist ein Maß für das Bestreben eines rotierenden Körpers seine Rotationsachse zu verändern, wenn der Körper nicht um eine seiner Hauptachsen rotiert. Das im Detail zu eräutern gehört ins Physik-Forum, daher musst du die Formel hier einfach "glauben". Diese Deviationsmomente möchte man immer möglichst nahe bei Null haben, damit die Rotation stabil ist. Andernfalls geht z.B. die Waschmaschine bei drehender Trommel auf Wanderschaft ;)
Das \(x\) steht also tatsächlich für die \(x\)-Koordinate des gerade betrachteten Punktes der Fläche.