Hallo Lumpii. Die Fouriertransformierte der Signalintensität der Raumpunkte ist eine Funktion von omega. Üblicherweise werden für die Ausgangsfunktionen Kleinbuchstaben und für die Transformierten Großbuchstaben verwendet. Wenn der Raum eindimensional ist, dann gilt somit
\( F\{s(x)\}=S(\omega) \)
Die Zeit kommt hierin nicht vor.
Tabelle der Korrespondenzen: https://de.wikipedia.org/wiki/Fourier-Transformation#Quadratisch_integrierbare_Funktionen.
Wenn der Raum zweidimensional ist, dann benötigen wir zweidimensionale Fouriertransformierte. Am Beispiel einer diskreten Fouriertransformation sieht das so aus:
\( \begin{aligned} \widehat{G}_{u, v} & =\frac{1}{\sqrt{M N}} \sum \limits_{m=0}^{M-1} \sum \limits_{n=0}^{N-1} G_{m, n} e^{-i \frac{2 \pi n v}{N}} e^{-i \frac{2 \pi m u}{M}}=\left\langle\mathbf{G}, \mathbf{B}_{u, v}^{*}\right\rangle=\left\langle\mathbf{G}, \mathbf{B}_{-u,-v}\right\rangle \\ & =\frac{1}{\sqrt{M N}} \sum \limits_{m=0}^{M-1}\left(\sum \limits_{n=0}^{N-1} G_{m, n} W_{N}^{-n v}\right) W_{M}^{-m u}\end{aligned} \)