\( (A \backslash B) \cap[(A \cap B) \cup(A \backslash C)] \)
=\( (A \cap \bar{B}) \cap[(A \cap B) \cup(A \cap \bar{C})] \)
= \( (A \cap \bar{B}) \cap[(A \cap (B \cup \bar{C})] \)
= \( A \cap \bar{B} \cap A \cap (B \cup \bar{C}) \)
= \( A \cap \bar{B} \cap (B \cup \bar{C}) \)
= \( A \cap [(\bar{B} \cap B) \cup (\bar{B} \cap \bar{C}) ]\)
= \( A \cap (\bar{B} \cap \bar{C}) \)
= \( A \cap \bar{B} \cap \bar{C} \)