Aufgabe:
Für welche Werte des reellen Parameters \( a \) ist die Funktion
\( f(x)=\left\{\begin{array}{ll} \Large \frac{-x^{2}+(a+1) x-a}{x^{2}-3 x+2} & \text { für } x<1 \\\\ (a+1) x^{2}+(5-2 a) x-7+a & \text { für } 1 \leq x \end{array}\right. \)
a) in \( x=1 \) stetig?
b) auf ganz ℝ stetig?
Problem/Ansatz:
Kann mir jemand bitte beim Lösen von den Teilaufgaben a und b helfen? Ich muss ja erst irgendeinen Grenzwert zuerst finden können, damit ich eine Aussage überhaupt treffen kann, welche Zahl für a ausgewählt werden muss, damit die Funktion gegen den Grenzwert läuft. Dies ist aber weder bei der oberen noch bei der unteren Funktion möglich. Ebenso, kann ich auch nicht die Teilaufgabe b rechnen. Auch dort bräuchte ich Hilfe bitte.