0 Daumen
293 Aufrufe

Aufgabe:

Man bestimme alle Lösungen des linearen Diophantischen Gleichungssystems:

9x + y + 3z = 3

4x - 2z = 0


Problem/Ansatz:

Kann mir jemand beim Lösen dieser Aufgabe weiterhelfen?


Vielen Dank!

Avatar von

2 Antworten

0 Daumen

Die zweite Gleichung lässt sich umstellen zu z=2x.

Einsetzen in

9x + y + 3z = 3

liefert

9x + y + 3(2x) = 3 und damit

y=3-15x.

x ist eine beliebige ganze Zahl, y ist 3-15x, und z ist 2x.

Avatar von 55 k 🚀
0 Daumen

Aloha :)

Ich würde den Gauß-Algorithmus anwenden. Wir wollen so viele Spalten wie möglich generieren, die lauter Nullen und genau eine Eins haben.:$$\begin{array}{rrr|r|l}x & y & z & = & \text{Operation}\\\hline9 & 1 & 3 & 3 &\\4 & 0 & -2 & 0 & \div(-2)\\\hline9 & 1 & 3 & 3 &-3\cdot\text{Zeile 2}\\-2 & 0 & 1 & 0 &\\\hline15 & \pink1 & 0 & 3 &\Rightarrow15x+\pink y=3\\-2 & 0 & \pink1 & 0 & \Rightarrow-2x+\pink z=0\end{array}$$Stelle die erhaltenen Gleichungen nach der pinken Variablen um:$$\pink y=3-15x\quad;\quad \pink z=2x$$und gib alle Lösungen an:$$\begin{pmatrix}x\\\pink y\\\pink z\end{pmatrix}=\begin{pmatrix}x\\3-15x\\2x\end{pmatrix}=\begin{pmatrix}0\\3\\0\end{pmatrix}+x\begin{pmatrix}1\\-15\\2\end{pmatrix}$$

Die Lösungen bilden offensichtlich eine Gerade ;)

Avatar von 152 k 🚀
Die Lösungen bilden offensichtlich eine Gerade ;)

Die Lösungen sind isolierte Punkte auf einer Gerade.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community