Aufgabe:
Es wird nun der "principal branch" der Logarithmusfunktion \( \log : \mathbb{C} \backslash \mathbb{R} \leq 0 \rightarrow \mathbb{C} \) betrachtet. Zeigen Sie, dass gilt:
Es gibt kein \( k \in \mathbb{Z} \), für das für jedes \( z_{1}, z_{2} \in \mathbb{C} \backslash \mathbb{R}_{\leq 0} \) mit \( z_{1} z_{2} \in \mathbb{C} \backslash \mathbb{R}_{\leq 0} \) gilt: \( \log \left(z_{1} z_{2}\right)= \) \( \log \left(z_{1}\right)+\log \left(z_{2}\right)+\pi i k \).
Problem/Ansatz:
Mir ist momentan leider nicht wirklich klar, wie ich die gegebene Aussage zeigen soll. Man wird wahrscheinlich irgendwie die folgende Eigenschaft der Logarithmusfunktion nutzen können:
\( \log (a b)=\log (a)+\log (b) \)
Bzw.
\( \log \left(z_{1} \cdot z_{2}\right)-\log \left(z_{1}\right)-\log \left(z_{2}\right)=\pi i k \)
Danke für Hilfe und Erklärung im Voraus ☺