Ich sehe in deinem Text nicht durch:
Recursion\, Kettenbruch:
\(a_{i+1} = \frac{1}{a_i-\lfloor a_i\rfloor}\to \lfloor \frac{1}{a_i-\lfloor a_i\rfloor}\rfloor,i=0\dots n \)
\(\begin{array}{l}a_{0}=\sqrt{12} =2 \sqrt{3}\end{array} \)
\(\begin{array}{l}a_{1}=\frac{1}{a_{0}-\left\lfloor a_{0}\right\rfloor} =\frac{1}{2 \sqrt{3}-3}\end{array} \)
\(\begin{array}{l}a_{2}=\frac{1}{a_{1}-\left\lfloor a_{1}\right\rfloor} =2 \sqrt{3}+3\end{array} \)
\(\begin{array}{l}a_{3} & =\frac{1}{a_{2}-\left\lfloor a_{2}\right\rfloor} = \frac{1}{2 \sqrt{3}-3}\end{array} \)
\(\begin{array}{l}a_{4}=\frac{1}{a_{3}-\left\lfloor a_{3}\right\rfloor} =2 \sqrt{3}+3\end{array} \)
\(\begin{array}{l}\left\lfloor\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right\}\right\rfloor =\{3,2,6,2,6\}\end{array} \)
\(3+\frac{1}{2+\frac{1}{6+\frac{1}{2+\frac{1}{6+\frac{1}{2+\frac{1}{6+\frac{1}{2+\cdots}}}}}}}\)