\(x^2− \frac{x}{m} −( \frac{1}{m} +4)=0\)
\(x^2− \frac{1}{m} \cdot x + (\frac{1}{2m})^2= \frac{1}{m} +4+ (\frac{1}{2m})^2\)
\([x-\frac{1}{2m}]^2= \frac{1}{m} +4+ (\frac{1}{2m})^2 |±\sqrt{~~}\)
1.)
\(x-\frac{1}{2m}= \sqrt{ \frac{1}{m} +4+ \frac{1}{4m^2}}\)
\(x_1=\frac{1}{2m}+ \sqrt{ \frac{1}{m} +4+ \frac{1}{4m^2}}\)
2.)
\(x-\frac{1}{2m}= -\sqrt{ \frac{1}{m} +4+ \frac{1}{4m^2}}\)
\(x_2=\frac{1}{2m}- \sqrt{ \frac{1}{m} +4+ \frac{1}{4m^2}}\)